Algebra Problem Solving Seminar

Miklós Abért and Péter Frenkel

2013/2014 second semester, Sheet 2

1. Can the polynomial

$$
\sum_{i=1}^{n} x_{i}^{2} \sum_{j=1}^{n} y_{j}^{2}-\left(\sum_{k=1}^{n} x_{k} y_{k}\right)^{2}
$$

be written as a sum of squares of polynomials with real coefficients?
2. For what n does it hold that all the coefficients of the cyclotomic polyno$\operatorname{mial} \Phi_{n}(x)$ are 0 or 1 ?
3. Let K be a field of characteristic different from 2 and let $A, B \in M_{n}(K)$. Then the matrices

$$
\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right) \text { and }\left(\begin{array}{cc}
A+B & 0 \\
0 & A-B
\end{array}\right)
$$

are conjugate in $M_{2 n}(K)$.
4. A basic step on a pair (a, b) of integers is to add an integer multiple of one of the entries to the other entry. Can you reach $(0, x)$ from all pairs of integers in 1000000 basic steps?
5. A finite group can be generated by a conjugacy class if and only if G / G^{\prime} is cyclic.
6. What is the maximal order of an Abelian subgroup of $\operatorname{Sym}(n)$?
7. Let p be a prime. Then every subgroup of $\operatorname{Sym}(p)$ generated by p-cycles is simple.
8. Let a, b be nontrivial commuting elements of the free group F. Then there exists $c \in F$ and integers n, m, such that $c^{n}=a$ és $c^{m}=b$.
9. Let Γ be a finitely generated matrix group over the complex numbers. Then the intersection of finite index subgroups in Γ equals 1.

