# Algebra Problem Solving Seminar <br> Miklós Abért and Péter Frenkel <br> 2013/2014 second semester, Sheet 4 

1. Let

$$
f(x, y)=1-3 x^{2} y^{2}+x^{4} y^{2}+x^{2} y^{4} .
$$

(a) Do we have $f \geq 0$ on $\mathbb{R}^{2}$ ?
(b) Is $f$ is a sum of squares in $\mathbb{R}[x, y]$ ?
2. In the group $G$, the intersection of all finite index subgroups is trivial. Does it follow that the intersection of all finite index normal subgroups is trivial?

3 . The ring $R$ with the absolute value

$$
|\cdot|: R \rightarrow S
$$

where $S$ is a well-ordered set, is left Euclidean if for all $a, b \in R, b \neq 0$, there exist $q, r \in R$ such that $a=q b+r$ and $|r|<|b|$.
(a) Is the ring $\mathbb{Z}+\mathbb{Z} i+\mathbb{Z} j+\mathbb{Z} k \subset \mathbb{H}$ with the usual absolute value left Euclidean?
(b) Is the ring

$$
\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{Z} \text { or } a, b, c, d \in \mathbb{Z}+1 / 2\}<\mathbb{H}
$$

with the usual absolute value left Euclidean?

# Algebra Problem Solving Seminar <br> Miklós Abért and Péter Frenkel <br> 2013/2014 second semester, Sheet 4 

1. Let

$$
f(x, y, z)=1-3 x^{2} y^{2}+x^{4} y^{2}+x^{2} y^{4} .
$$

(a) Do we have $f \geq 0$ on $\mathbb{R}^{2}$ ?
(b) Is $f$ is a sum of squares in $\mathbb{R}[x, y]$ ?
2. In the group $G$, the intersection of all finite index subgroups is trivial. Does it follow that the intersection of all finite index normal subgroups is trivial?
3. The ring $R$ with the absolute value

$$
|\cdot|: R \rightarrow S
$$

where $S$ is a well-ordered set, is left Euclidean if for all $a, b \in R, b \neq 0$, there exist $q, r \in R$ such that $a=q b+r$ and $|r|<|b|$.
(a) Is the ring $\mathbb{Z}+\mathbb{Z} i+\mathbb{Z} j+\mathbb{Z} k \subset \mathbb{H}$ with the usual absolute value left Euclidean?
(b) Is the ring

$$
\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{Z} \text { or } a, b, c, d \in \mathbb{Z}+1 / 2\}<\mathbb{H}
$$

with the usual absolute value left Euclidean?

