Algebra Problem Solving Seminar
 Miklós Abért and Péter Frenkel
 2013/2014 second semester, Sheet 5

1. A basic step on a triple (a, b, c) of integers is to add an integer multiple of one of the entries to another entry. Can you reach $(0,0, x)$ from all triples of integers in 5 basic steps?
2. Let $\omega: M_{3}(\mathbb{C}) \times M_{3}(\mathbb{C}) \rightarrow \mathbb{C}$ be an antisymmetric bilinear form such that $\omega(\mathbf{1}, g)=0$ for all $g \in M_{3}(\mathbb{C})$. Does it follow that for all natural numbers k and l,

$$
\frac{\omega\left(g^{k}, g^{l}\right)}{\omega\left(g, g^{2}\right)}=\frac{\omega\left(h^{k}, h^{l}\right)}{\omega\left(h, h^{2}\right)}
$$

whenever g and h are similar matrices such that both denominators are nonzero?
3. (a) If $f \in \mathbb{R}[x]$ is nonnegative on \mathbb{R}, then it is a sum of the squares of two polynomials.
(b) By definition, a trigonometric polynomial is a linear combination of the functions $\cos n x, \sin n x(n=0,1, \ldots)$.
Prove that if a trigonometric polynomial is nonnegative on \mathbb{R}, then it is a sum of the squares of two trigonometric polynomials.
4. In the group $\mathrm{SL}_{2}(\mathbb{Z})$, the elements

$$
\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)
$$

generate a free subgroup.
5. (a) No element of \mathbb{Z} is irreducible in the ring

$$
\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{Z} \text { or } a, b, c, d \in \mathbb{Z}+1 / 2\}<\mathbb{H} .
$$

(b) Deduce that every natural number is a sum of four squares.
6. Let η be a group endomorphism such that $\operatorname{im} \eta^{m}=\operatorname{im} \eta^{m+1}$ and $\operatorname{ker} \eta^{k}=\operatorname{ker} \eta^{k+1}$ for some m and k. Prove that the minimal such m and k is the same number.
7. For a finite extension L of a finite field K, both trace and norm are surjective $L \rightarrow K$ maps. By definition, the trace of x is $\sum \sigma(x)$ and the norm of x is $\prod \sigma(x)$, where σ runs over the Galois group.
8. $\operatorname{PSL}_{2}(4) \simeq A_{5}$.

