Algebra Problem Solving Seminar

Miklós Abért and Péter Frenkel
2013/2014 second semester, Sheet 3

1. Let $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.
(a) We have $f \geq 0$ on $[0, \infty)^{n}$ if and only if $f\left(x_{1}^{2}, \ldots, x_{n}^{2}\right) \geq 0$ on \mathbb{R}^{n}.
(b) We can write f as a finite sum $\sum f_{j} g_{j}^{2}$ with $f_{j}, g_{j} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, all coefficients of f_{j} being nonnegative, if and only if $f\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)$ is a sum of squares in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.
2. Let S be an alphabet such that for every $s \in S$ the formal inverse $s^{-1} \in S$. Two finite words in S are equivalent if one can get one from the other by erasing a subword of the form $s s^{-1}$ or $s^{-1} s$. This extends to an equivalence relation on finite words in S. Prove that every class contains exactly one word with no subwords of the form $s s^{-1}$ or $s^{-1} s$. (In other words, prove that the free group F_{S} is well defined.)
3. A basic step on a triple (a, b, c) of integers is to add an integer multiple of one of the entries to another entry. Can you reach $(0,0, x)$ from all triples of integers in 1000000 basic steps?
4. Let $g \in M_{2}(\mathbb{C})$ and

$$
g^{l}=\left(\begin{array}{cc}
a_{l} & b_{l} \\
c_{l} & d_{l}
\end{array}\right)
$$

Prove that b_{l} / b_{1} does not change if we replace g by a matrix similar to it.
5. Prove that every finite group can be obtained as the automorphism group of a finite graph.
6. Let K be a field and $A \in M_{n}(K)$. Then A and A^{\top} are similar over K.
7. Prove that every finite group of order n can be generated by at most $\log _{2} n$ elements. When do we have equality?
8. Does there exist a nontrivial Abelian group $(A,+)$ such that for all rings $(A,+, \cdot)$, the multiplication - is identically zero?
9. The group of units of the ring

$$
\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{Z} \text { or } a, b, c, d \in \mathbb{Z}+1 / 2\}<\mathbb{H}
$$

is isomorphic to $\mathrm{SL}_{2}(3)$.

